- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Kolev, Vesselin (3)
-
Warshel, Arieh (3)
-
Mondal, Dibyendu (2)
-
Yoon, Hanwool (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Mondal, Dibyendu; Kolev, Vesselin; Warshel, Arieh (, Proceedings of the National Academy of Sciences)Understanding the activation mechanism of the μ-opioid receptor (μ-OR) and its selective coupling to the inhibitory G protein (Gi) is vital for pharmaceutical research aimed at finding treatments for the opioid overdose crisis. Many attempts have been made to understand the mechanism of the μ-OR activation, following the elucidation of new crystal structures such as the antagonist- and agonist-bound μ-OR. However, the focus has not been placed on the underlying energetics and specificity of the activation process. An energy-based picture would not only help to explain this coupling but also help to explore why other possible options are not common. For example, one would like to understand why μ-OR is more selective to Githan a stimulatory G protein (Gs). Our study used homology modeling and a coarse-grained model to generate all of the possible “end states” of the thermodynamic cycle of the activation of μ-OR. The end points were further used to generate reasonable intermediate structures of the receptor and the Gito calculate two-dimensional free energy landscapes. The results of the landscape calculations helped to propose a plausible sequence of conformational changes in the μ-OR and Gisystem and for exploring the path that leads to its activation. Furthermore, in silico alanine scanning calculations of the last 21 residues of the C terminals of Giand Gswere performed to shed light on the selective binding of Gito μ-OR. Overall, the present work appears to demonstrate the potential of multiscale modeling in exploring the action of G protein-coupled receptors.more » « less
-
Yoon, Hanwool; Kolev, Vesselin; Warshel, Arieh (, The Journal of Physical Chemistry B)
An official website of the United States government
